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1. Additional Model and Training Hyperpa-
rameters

Our full training pipeline is written in PyTorch. As men-
tioned in the main text, we utilize a multi-layer perceptron
with 9 hidden layers and one output layer totalling 10 lay-
ers for each of our models. Depending on the target level
of detail, we vary the number of neurons used at each hid-
den layer. This can be 128, 256, 384 or 512. Each hid-
den layer is followed by a layer normalization (LayerNorm)
layer with learned affine parameters providing a learned
scale and bias for each node. For our progressive model,
along with taking subsets of the weight and bias parameters
of the linear layer, we also take the appropriate subsets of
the scale and bias parameters for each LayerNorm layer.

In addition to the primary light field networks, we also
train an auxiliary network which encodes the occupancy.
The auxiliary network is made up of two hidden layers with
16 neurons each and one output layer. It is trained alongside
the primary light field network using the same optimizer
with an squared L2 loss.

Our models are trained using the Adam optimizer with
the learning rate set to 0.001. Additionally, the learning rate
is decayed by γ = 0.98 at the end of each epoch using an
exponential learning rate scheduler. All runs are performed
with an identical seed for the random number generator. We
use the same hyper-parameters across all datasets.

2. Additional Qualitative Results
Qualitative results for all of our datasets comparing

single-scale LFNs and progressive multi-scale LFNs are
shown on the following page. Rendered video of each static
light field from different views are provided on our supple-
mentary webpage.

3. Training Ablation Details
3.1. Training Strategy

To evaluate our training strategy, we perform an abla-
tion against progressive training. For progressive training,
we use the same progressive multi-scale LFN model where
subsets of coefficients are used to represent different levels

of detail. Levels of detail trained sequentially from the low-
est level to the highest at their target resolutions. Once an
LOD is trained, it’s parameters are frozen so they do not get
updated during the training of subsequent levels. However,
each subsequent LOD still shares parameters from lower
levels. We train LODs one, two, three, and four for 2133,
533, 133, and 100 epochs respectively on images downsam-
pled to their target resolution to approximately match the
expected number of rays sampled using our training strat-
egy. Additionally, we do not use learning rate scheduling
due to the additional epochs. We observe that progressive
training can achieve similar PSNR results but has worse
SSIM results and takes an average of 24.20 hours to train
compared to 17.78 hours for our training strategy.

3.2. Number of Training Views

To determine how the amount of training views affects
the resulting render quality, we conduct experiments train-
ing our progressive multi-scale light field networks with
fewer training views. For each dataset, we load every other
training view of the original 216 training views for a total
of 108 views. Then the same 16 test split views are used to
compute the PSNR and SSIM metrics to evaluate the visual
quality. Since light field networks do not have as strong a
3D prior as NeRFs, utilizing a NeRF-based teacher model
may be needed for setups with much fewer cameras.

4. Areas for Future Work
4.1. Dynamic Light Field Networks

Our current work does not utilize dynamic light fields,
also known as light field videos. One method of achiev-
ing dynamic light field networks involves simply inputting
a time coordinate to the light field as used in SIGNET [2].
Another potential method could be predicting Fourier co-
efficients similar to Fourier PlenOctrees [5]. In both cases,
we believe our method would be applicable to dynamic light
field networks though we leave exploration of these to fu-
ture work.

4.2. View Synthesis Quality

As noted by Sitzmann et al. [4], LFNs have worse multi-
view consistency compared to neural radiance fields [3],
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Figure 1: Qualitative results for dataset A.
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Figure 2: Qualitative results for dataset B.
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Figure 3: Qualitative results for dataset C.
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Figure 4: Qualitative results for dataset D.
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Figure 5: Qualitative results for dataset E.

hence requiring many more views for training. When
adding positional encoding to the Plücker coordinates,
LFNs can better render high-frequency detail from training
views but largely fail at view synthesis. In our experiments,
our light field networks directly input Plücker coordinates
into the network without any positional encoding. This is
enabled by our dense camera setup featuring 240 camera
views. Future work may focus on closing the gap in view
synthesis quality and dataset requirements between LFNs
and NeRFs.

Table 1: Average Model Rendering Quality

Model LOD 1 LOD 2 LOD 3 LOD 4
Multi-scale LFN 29.37 29.88 29.01 28.12
Mip-NeRF 23.45 24.32 24.46 24.26

(a) PSNR (dB) at 1/8, 1/4, 1/2, and 1/1 scale.

Model LOD 1 LOD 2 LOD 3 LOD 4
Multi-scale LFN 0.8834 0.8819 0.8626 0.8570
Mip-NeRF 0.6681 0.6830 0.6704 0.6624

(b) SSIM at 1/8, 1/4, 1/2, and 1/1 scale.

To determine how well our datasets are represented with
NeRFs, we compare our method against Mip-NeRF [1] on
our 240 camera setup datasets. Following our existing train-
ing setup, we use 216 training poses, 12 validation poses,
and 12 test poses. We train Mip-NeRF for 1, 000, 000 it-
erations using a batch size of 1024 rays with our dataset
reader sampling 67% of rays from the foreground and 33%
from the background in each batch. Our quantitative re-
sults are shown in Table 1. On our datasets, we observe that
Mip-NeRF produces softer edges and artifacts in unoccu-
pied regions which lead to worse PSNR and SSIM scores.
Note that further hyper-parameter tuning may improve Mip-
NeRF results.
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